Chapter $6 \rightarrow$ Dilution
Dilution Formula $C_{1} V_{1}=C_{2} V_{2}$

$$
{\underset{T}{T}}_{M_{1}=}^{V_{2} X_{2}}
$$

Ex
How many ut of a 1.735 M solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are required to make 350 mL of $0.625 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

3 out of 4 variables $\Rightarrow C_{1} V_{1}=C_{2} V_{2}$
(1) Table or List

$$
\begin{aligned}
& C_{1}=1.735 \mathrm{M} \text { or mols /L } \mathrm{F} \\
& V_{1}=? \mathrm{~mL} \longleftarrow \text { same } \\
& C_{2}=0.625 \mathrm{M} \text { ar mole } / \mathrm{L} \\
& V_{2}=350 . \mathrm{mL}
\end{aligned}
$$

Solve equation

$$
\begin{aligned}
& \text { (2) } \frac{C_{1} V_{1}}{C_{1}}=\frac{C_{2} V_{2}}{C_{1}} \\
& V_{1}=\frac{C_{2} V_{2}}{C_{1}}
\end{aligned}
$$

(3) Plug in values \& Solve

$$
\begin{aligned}
& V_{1}=\frac{\left(0.625 \mathrm{~m}^{4}\right)(350 . \mathrm{mL})}{\left(1.735 \mathrm{~m}^{4}\right)}=126.080691 \mathrm{~mL} \\
& 4=126 \mathrm{~mL} \text { of } \\
& 1.735 \mathrm{M} \mathrm{H} \mathrm{HO}_{4} \mathrm{Req}
\end{aligned}
$$

Ex A reaction requires 320. mL of a 0.175 M solution of nitric acid $\left(\mathrm{HNO}_{3}\right)$.

In the stockroom you find a bottle of $6.725 \mathrm{M} \mathrm{HNO}_{3}$. How many ML of the $6.725 \mathrm{M} \mathrm{HNO}_{3}$ are required $\} \begin{aligned} & \text { Real } \\ & \text { question }\end{aligned}$ to make the 320 mL of 0.175 M . HNO_{3} ?

$$
\begin{array}{ll}
C_{1}=6.725 \mathrm{M}+\mathrm{NO}_{3} & \frac{C_{1} V_{1}}{C_{1}}=\frac{C_{2} V_{2}}{C_{1}} \\
V_{1}=? & V_{1}=\frac{C_{2} V_{2}}{C_{1}} \\
C_{2}=0.175 \mathrm{M} & V_{1}=320 \mathrm{~mL} \\
V_{2}=\frac{(0.175 \mathrm{~m})(320 . \mathrm{mL})}{(6.725 \mathrm{~m})}
\end{array}
$$

$$
\begin{aligned}
V_{1} & =8.327137 \mathrm{~mL} \mathrm{HNO}_{3} \\
& =8.33 \mathrm{~mL} \mathrm{HNO}
\end{aligned}
$$

Ex what is the resulting molarity when 6.72 mL of a stock Solution of 10.62 M sulfuric acid is diluted to a final volume of 125 mL ?

$$
\begin{aligned}
& C_{1}=10.62 \mathrm{M} \\
& V_{1}=6.72 \mathrm{~mL} \\
& \frac{C_{1} V_{1}}{V_{2}}=\frac{C_{2} V_{2}^{1}}{V_{2}^{n}} \\
& C_{2}=\text { ? } \\
& V_{2}=125 \mathrm{~mL} \quad C_{2}=\frac{C_{1} V_{1}}{V_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =0.571 \mathrm{M} \text { or malt } / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

Conclusion Chapter 6

Chapter 7

- Balancing chemical Equations
- Classifying chemical Reacts
 Aed/Basc
- Stoichiometry with reactions (Stoichiometry Reallup)
- Reaction Yields

Balancing Chemical Equations

Lower case are coefficients
Equations are balanced with coefficients
Reactants
Products
1
Coefficients \Rightarrow Molar Coefficients

atomic \& molar Ratios
cal

1) The subscripts tell us how many atoms of each element are in the compound or molecule.

$$
\downarrow^{6.022 \times 10^{23}}
$$

(2) The subscripts also tell us how many moles of atoms are in each mole of Compound or molecules.

Balanced Chemical Equation

Either singular (atomic or molecular) ratios or molar Ratios (moles of molecules)
Reactants

Na $3 \times 2=6$
C $3 \times 1=3$
O $3 \times 3=9$
A| $2 \times 1=2$
Cl $2 \times 3=6$

Products
$\mathrm{Na} 6 \times 1=6$

$$
\left\{\begin{array}{l}
\text { C } 1 \times 3 \times 1=3 \\
0 \\
1 \times 3 \times 3=9 \\
\text { Al } 1 \times 2=2 \\
\text { Cl } 6 \times 1=6
\end{array}\right.
$$

Rules for Balancing Eq

1) You may only change Coefficients \Rightarrow never Subscripts
2) Start left to right balancing any element that does not appear more than 3 times in the reaction.
3) Save diatomic \& monatomic elements for last diatomic $H_{\substack{0 \\ \text { ofbrincl } \\ \text { or }}}\left(\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{Cl}_{2}\right)$ Brincthof HOFBrINCl monatomic (Nay, Fe, Cu)
4) You may use a fractional Coefficient to gain an odd number of a diatomic $\frac{3}{2} O_{2}=30 \Rightarrow Y_{\text {au must }}$ clear the fraction at the end

By following the rules you should be able to balance any equation in this Class in 4 steps or less. More than 4 steps \Rightarrow Likely made an error.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+2 \mathrm{O}_{(\mathrm{c})}^{\text {save for last }} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

H 4
C 2
H $2 \times 2=4$ -
C $\quad 1 \times 2=2$
hast $\Rightarrow 0$ Y 6

$$
\begin{aligned}
& 2+2 \times 2 \\
& 2+4=6
\end{aligned}
$$

03

$$
\begin{gathered}
2 \times 2+2 \times 1=6 \\
4+2
\end{gathered}
$$

$$
\begin{aligned}
& \frac{9}{4} \times 2=9
\end{aligned}
$$

No fractional Coefficients

$$
2 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Types of Chemical Reactions

$$
\begin{aligned}
& \stackrel{+-}{+-D^{-}}+{ }^{+} D^{-}+D^{+}+D^{-} \text {Double Displacement } \\
& 3 \mathrm{NaOH}_{\text {(eg) }}+\mathrm{FeCl}_{3(\mathrm{ad})} \rightarrow 3 \mathrm{NaCl}_{\text {eZ }}+\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \\
& A+B C \rightarrow B+A C \quad \text { Single Replacement } \\
& \underset{\mathrm{Zn}_{(5)}}{ }+\underset{\substack{2 \mathrm{HCl} \\
\text { (8) }}}{ } \rightarrow \mathrm{H}_{2(9)}+\mathrm{ZnCl}_{2(\text { a, })} \\
& A \longrightarrow B+C+D \text { Decomposition } \\
& \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{Q})}+\mathrm{CO}_{2} \\
& A+B+C \rightarrow D \quad \text { Combination } \\
& 2 \mathrm{H}_{\mathrm{CQ}^{+}}+\mathrm{O}_{2 \mathrm{Q}} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{c})}
\end{aligned}
$$

Combustion Reaction

$$
\begin{aligned}
& \underbrace{\mathrm{C}_{x} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{~S}_{c} \mathrm{~N}_{m}}_{\text {possible Conbmations }}+\underset{\substack{\text { oxygen gas }}}{\mathrm{O}_{2}} \rightarrow \underbrace{\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{NO}_{2}}_{\text {oxides }} \\
& \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}
\end{aligned}
$$

most frequently

$$
\underset{\substack{\text { Hydrocarbon }}}{\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{2}}+\mathrm{O}_{2} \rightarrow \underbrace{\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}}_{\text {Carbondioxide \& water }}
$$

Acid-Base Reaction

$$
\underset{\substack{\uparrow \\ \text { acidic }}}{\mathrm{HCl}}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Acid $=$ proton (or hydrogen ion) donor H^{+}
Base $=$ proton (or hydrogen ion) acceptor

7.2 after classification focuses on double displacement predicting the products of double displacement Double Displacement or
Double Replacement

Precipitation Reaction

$$
\mathrm{NaOH}_{(\text {aq })}+\mathrm{FeCl}_{3 \text { (qq) }} \rightarrow \mathrm{NaCl}_{(\text {(8) }}+\mathrm{Fe}(\mathrm{OH})_{3(\mathrm{~s})}
$$

$\mathrm{Na}^{+} \mid \mathrm{Cl}^{-}$
-

(1) Must properly balance products
$\stackrel{\text { products }}{\Rightarrow}$ Subscripts
(2) must balance Equation \Rightarrow Coefficients

$$
\begin{aligned}
& 3 \mathrm{NaOH}_{(q)}+\mathrm{FeCl}_{(\mathrm{cq})} \rightarrow 3 \mathrm{NaCl}_{\text {(q) }}+\mathrm{Fe}(\mathrm{OH})_{3(\mathrm{~s})} \\
& \mathrm{Na}^{+} \quad \times 3 \\
& \text { ot } \times 3 \\
& \mathrm{Fe}^{3+} 1 \\
& \mathrm{Cl}^{-} 3
\end{aligned}
$$

